Skip to main content

Probability — JEE Mains 2026 Revision capsule

Home  ›  Mathematics  ›  probability Revision

Probability — JEE Mains 2026 Revision capsule 

A compact, high-yield probability capsule — every formula, every trap, P&C connections, solved examples and a fast recall ladder. MathJax renders all equations.


Axioms
\(0\le P(A)\le1,\; P(S)=1,\; P(A^c)=1-P(A)\)
Add/Mul Rules
\(P(A\cup B)=P(A)+P(B)-P(A\cap B)\)
\(P(A\cap B)=P(A)P(B|A)\)
Bayes & Total
\(P(A)=\sum_i P(B_i)P(A|B_i)\)
\(P(B_k|A)=\dfrac{P(B_k)P(A|B_k)}{\sum_i P(B_i)P(A|B_i)}\)
Exam-Killer (memorize):
  • “At least one” → use complement: \(1-P(\text{none})\).
  • Without replacement → events dependent. Use combinations, not product of probabilities.
  • Bayes = prior × likelihood / evidence — draw tree for clarity.

1. Core Definitions

Experiment, Sample Space \(S\), Event \(E\). Fundamental formula:

Classical probability:
\[ P(E)=\frac{n(E)}{n(S)} \]

Types of events

  • Sure event: \(P=1\). Impossible: \(P=0\).
  • Mutually exclusive: \(A\cap B=\varnothing\).
  • Complement: \(P(A^c)=1-P(A)\).

2. Addition & Multiplication Rules

Addition (general):
\[ P(A\cup B)=P(A)+P(B)-P(A\cap B) \] For disjoint events → \(P(A)+P(B)\).
Multiplication (chain):
\[ P(A\cap B)=P(A)\,P(B|A)=P(B)\,P(A|B) \] If independent → \(P(A\cap B)=P(A)P(B)\).

3. Conditional Probability & Bayes

Conditional:
\[ P(A|B)=\frac{P(A\cap B)}{P(B)}\quad(P(B)>0) \]
Total probability:
If \(B_1,\dots,B_n\) partition \(S\), \[ P(A)=\sum_{i=1}^n P(B_i)P(A|B_i) \]
Bayes' theorem:
\[ P(B_k|A)=\frac{P(B_k)P(A|B_k)}{\sum_{i=1}^n P(B_i)P(A|B_i)} \]
P&C Connection (how to count):

Use Permutation & Combination to compute both numerator (favourable) and denominator (total) — then apply \(P=\dfrac{n(E)}{n(S)}\).


4. Bernoulli Trials & Binomial

Exactly \(k\) successes in \(n\) trials:
\[ P(X=k)=\binom{n}{k}p^k(1-p)^{\,n-k} \]

Useful variations:

  • \(\)At least one success: \(1-(1-p)^n\).
  • \(\)Odd/even heads: use binomial sum or symmetry shortcuts.

5. Expectation & Useful Distributions

Expectation (discrete):
\[ E(X)=\sum_x x\,P(X=x) \]

Examples: coin(n tosses) → \(E(\text{heads})=np\). Fair die → \(E(X)=3.5\).


6. JEE Traps & How to Avoid (Red Alerts)

  • Dependent vs independent: Drawing without replacement is dependent — recompute totals after each draw.
  • Equally likely assumption: verify before using \(n(E)/n(S)\).
  • Conditional-set misread: Always restrict sample space when a condition is given — re-normalize probabilities.
  • Overcounting/undercounting: check order vs selection, use combinations for unordered selection.

7. Fast Revision Ladder (10s recall)

Core
\(P=\dfrac{n(E)}{n(S)}\)
Cond.
\(P(A|B)=\dfrac{P(A\cap B)}{P(B)}\)
Binomial
\(\binom{n}{k}p^k(1-p)^{n-k}\)

8. Solved Examples (Short & JEE-style)

Ex 1 — Two dice: probability sum divisible by 3

Solution (counting):

Sample space size \(=36\). Sums divisible by 3 are 3,6,9,12.

Count outcomes: sum=3→2, sum=6→5, sum=9→4, sum=12→1. Total favourable \(=2+5+4+1=12\).

Therefore \(P=\dfrac{12}{36}=\dfrac{1}{3}.\)

Ex 2 — Biased coin p=0.6, 5 tosses: P(exactly 3 heads)

Solution:

\[ P=\binom{5}{3}(0.6)^3(0.4)^2 = 10\times 0.216\times 0.16 = 0.3456 \]

So probability ≈ 0.3456.

Ex 3 — Two balls from (3R,4B,5G): P(both same color)

Solution:

Total ways to pick 2 balls: \(\binom{12}{2}=66\).

Favourable: RR: \(\binom{3}{2}=3\), BB: \(\binom{4}{2}=6\), GG: \(\binom{5}{2}=10\). Total \(=19\).

\(P=\dfrac{19}{66}\).


9. Practice Problems (Try First)

  1. Form a 3-digit number from digits 1–6 without repetition: P(it is even but not divisible by 4).
  2. Two cards drawn without replacement from 52: P(both are hearts).
  3. Box A has 2 defective in 10, Box B has 3 defective in 20. Choose a box at random and pick one item. P(item defective?) (use Bayes)
  4. From 6 men and 4 women, committee of 4 chosen. P(at least 2 women).
Show Quick Answers / Hints
  1. Count total \(6\cdot5\cdot4=120\) numbers; check last digit even (2,4,6) and test divisibility by 4 using last two digits.
  2. \(\dfrac{13}{52}\times\dfrac{12}{51}=\dfrac{1}{17}\) (or use combinations: \(\dfrac{\binom{13}{2}}{\binom{52}{2}}\)).
  3. Total P(def)= \( \tfrac12\cdot\tfrac{2}{10} + \tfrac12\cdot\tfrac{3}{20}=0.1 + 0.075=0.175\). For Bayes compute conditional probabilities accordingly.
  4. Compute complement P(0 or 1 woman) and subtract from 1.

10. One-line Takeaways

  • Always restructure sample space after a condition; renormalize probabilities.
  • Count using P&C first — probability is a ratio.
  • For “at least one”, use complement — saves time and reduces errors.
  • Bayes = reverse conditional probability; draw trees for clarity.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…