Skip to main content

Methods of Differentiation – Complete JEE Revision

 

Methods of Differentiation – Complete JEE Revision

Differentiation is about choosing the correct method, not brute force. JEE questions are designed to punish wrong method selection. This chapter systematically covers all differentiation methods used in JEE Mains & Advanced.


1. Basic Concept

\[ \frac{dy}{dx} = \lim_{h\to0}\frac{f(x+h)-f(x)}{h} \]

Differentiation measures the rate of change of one quantity with respect to another.


2. Standard Derivatives (Must Memorise)

  • \(\frac{d}{dx}(x^n)=nx^{n-1}\)
  • \(\frac{d}{dx}(e^x)=e^x\)
  • \(\frac{d}{dx}(a^x)=a^x\ln a\)
  • \(\frac{d}{dx}(\ln x)=\frac{1}{x}\)
  • \(\frac{d}{dx}(\sin x)=\cos x\)
  • \(\frac{d}{dx}(\cos x)=-\sin x\)
  • \(\frac{d}{dx}(\tan x)=\sec^2 x\)
  • \(\frac{d}{dx}(\cot x)=-\csc^2 x\)
  • \(\frac{d}{dx}(\sec x)=\sec x\tan x\)
  • \(\frac{d}{dx}(\csc x)=-\csc x\cot x\)

3. Method 1 – Differentiation from First Principle

Used mainly in conceptual or proof-based questions.

Example:
Differentiate \(f(x)=x^2\) \[ \frac{d}{dx}(x^2) = \lim_{h\to0}\frac{(x+h)^2-x^2}{h} =2x \]

4. Method 2 – Chain Rule

If \(y=f(g(x))\), then:

\[ \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} \]
Example:
Differentiate \(y=\sin(x^2)\) \[ \frac{dy}{dx}=\cos(x^2)\cdot2x \]

5. Method 3 – Implicit Differentiation

Used when \(y\) is not explicitly written as a function of \(x\).

Example:
Given \(x^2+y^2=1\) \[ 2x+2y\frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}=-\frac{x}{y} \]

6. Method 4 – Logarithmic Differentiation

Used when variable appears in both base and power.

Example:
Differentiate \(y=x^x\) \[ \ln y=x\ln x \Rightarrow \frac{1}{y}\frac{dy}{dx}=\ln x+1 \] \[ \Rightarrow \frac{dy}{dx}=x^x(\ln x+1) \]

7. Method 5 – Parametric Differentiation

If \(x=f(t)\) and \(y=g(t)\):

\[ \frac{dy}{dx}=\frac{dy/dt}{dx/dt} \]
Example:
\(x=t^2,\; y=t^3\) \[ \frac{dy}{dx}=\frac{3t^2}{2t}=\frac{3t}{2} \]

8. Method 6 – Differentiation of Inverse Functions

\[ \frac{d}{dx}(\sin^{-1}x)=\frac{1}{\sqrt{1-x^2}} \] \[ \frac{d}{dx}(\tan^{-1}x)=\frac{1}{1+x^2} \]

9. Higher Order Derivatives

Repeated differentiation of a function.

Example:
If \(y=e^x\sin x\), \[ \frac{d^2y}{dx^2}=2e^x\cos x \]

10. JEE Traps & Pain Points

  • Forgetting chain rule
  • Wrong differentiation of inverse trig
  • Ignoring domain restrictions
  • Mixing implicit & explicit methods
  • Sign mistakes in higher derivatives

Core Insight:
JEE does not test differentiation — it tests method selection. Recognize the form first, then apply the method.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…