Matrices – Complete Revision Series (JEE Level)
Matrices provide a powerful algebraic language to represent systems of equations, transformations, and logical structure. In JEE, this chapter blends precision with speed.
1. Matrix Definition
\[ A = [a_{ij}]_{m \times n} \]A matrix is a rectangular array of elements arranged in rows and columns.
2. Types of Matrices
- Row Matrix: \(1 \times n\)
- Column Matrix: \(m \times 1\)
- Square Matrix: \(n \times n\)
- Zero Matrix
- Diagonal Matrix
- Scalar Matrix
- Identity Matrix \(I_n\)
- Symmetric Matrix: \(A^T = A\)
- Skew-Symmetric Matrix: \(A^T = -A\)
Important: Diagonal elements of a skew-symmetric matrix are always zero.
3. Matrix Operations
Addition
\[ A+B = [a_{ij}+b_{ij}] \]Scalar Multiplication
\[ kA = [ka_{ij}] \]4. Matrix Multiplication
If \(A_{m\times n}\) and \(B_{n\times p}\), then
\[ (AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} \]- Not commutative: \(AB \neq BA\)
- Associative
- Distributive
5. Transpose
\[ (A^T)_{ij} = a_{ji} \]- \((A^T)^T = A\)
- \((AB)^T = B^T A^T\)
- \((A+B)^T = A^T + B^T\)
6. Adjoint of a Matrix
The adjoint (adjugate) of a square matrix \(A\), denoted by \(\text{Adj}\,A\), is the transpose of its cofactor matrix.
Definition
\[ (\text{Adj}\,A)_{ij} = C_{ji} \] where \[ C_{ij} = (-1)^{i+j} M_{ij} \] and \(M_{ij}\) is the minor of element \(a_{ij}\).Key Property
\[ A(\text{Adj}\,A) = (\text{Adj}\,A)A = |A| I \]JEE Gold Formula: This identity is the backbone of inverse and proof questions.
7. Important Adjoint Properties
- \(\text{Adj}(AB) = (\text{Adj}B)(\text{Adj}A)\)
- \(\text{Adj}(A^T) = (\text{Adj}A)^T\)
- \(\text{Adj}(kA) = k^{n-1}\text{Adj}(A)\) for \(n \times n\) matrix
- \(|\text{Adj}(A)| = |A|^{n-1}\)
- \(\text{Adj}(I) = I\)
8. Inverse of a Matrix
A square matrix \(A\) is invertible if
\[ |A| \neq 0 \]Formula
\[ A^{-1} = \frac{1}{|A|}\text{Adj}(A) \]9. Solving Linear Equations
\[ AX = B \Rightarrow X = A^{-1}B \quad (|A|\neq0) \]Link with Determinants: Zero determinant → no inverse → system fails or infinite solutions.
10. High-Yield JEE Formulas
- \(A(\text{Adj}A)=|A|I\)
- \((A^{-1})^{-1}=A\)
- \((AB)^{-1}=B^{-1}A^{-1}\)
- \((A^T)^{-1}=(A^{-1})^T\)
- \(|A^{-1}|=\frac{1}{|A|}\)
11. Common Mistakes
- Forgetting determinant condition
- Wrong cofactor signs
- Assuming commutativity
- Mixing adjoint and transpose
StudyBeacon Revision Series — precision beats memorization.
Comments