Limits – Complete JEE Main 2026 Revision
A limit describes the value a function approaches as the variable gets close to a point. It does not require the function to be defined at that point.
1. Definition of Limit
$\displaystyle \lim_{x \to a} f(x) = L$
This means $f(x)$ can be made arbitrarily close to $L$ by taking $x$ sufficiently close to $a$.
2. Left & Right Hand Limits
$\displaystyle \lim_{x \to a^-} f(x)$ (Left Hand Limit)
$\displaystyle \lim_{x \to a^+} f(x)$ (Right Hand Limit)
Limit exists iff:
$\displaystyle \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$
JEE Main frequently tests piecewise functions using this.
3. Direct Substitution Rule
If $f(x)$ is continuous at $x=a$:
$\displaystyle \lim_{x \to a} f(x) = f(a)$
Fails when substitution gives indeterminate form.
4. Standard Limits (Core JEE Main)
Trigonometric
$\displaystyle \lim_{x \to 0} \frac{\sin x}{x} = 1$
$\displaystyle \lim_{x \to 0} \frac{\tan x}{x} = 1$
$\displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac12$
$\displaystyle \lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$
Note: $x$ must be in radians.
Exponential & Logarithmic
$\displaystyle \lim_{x \to 0} \frac{e^x-1}{x} = 1$
$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x} = \ln a$
$\displaystyle \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
$\displaystyle \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e$
5. Algebraic Limits
$\displaystyle \lim_{x \to a} \frac{x^n-a^n}{x-a} = na^{n-1}$
$\displaystyle \lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n$
Used in JEE Main simplification-based questions.
6. Limits Involving Infinity
Rational Functions
If degree(numerator) = degree(denominator):
Limit = ratio of leading coefficients
If degree(numerator) < degree(denominator):
Limit = 0
If degree(numerator) > degree(denominator):
Limit = $\infty$ or $-\infty$
7. Indeterminate Forms
| Form | Resolution |
|---|---|
| $\frac{0}{0}$ | Factorization / Rationalization |
| $\frac{\infty}{\infty}$ | Divide by highest power |
| $0\cdot\infty$ | Convert to fraction |
| $\infty-\infty$ | Combine terms |
| $0^0,1^\infty,\infty^0$ | Logarithmic method |
8. Sandwich (Squeeze) Theorem
If $f(x)\le g(x)\le h(x)$ and
$\lim f(x) = \lim h(x) = L$
Then:
$\displaystyle \lim g(x) = L$
Used in oscillatory functions like $x\sin\frac{1}{x}$.
9. Absolute Value Limits
$\displaystyle \lim_{x\to0} \frac{|x|}{x}$ does not exist
Break absolute values into piecewise form before evaluating.
10. JEE Main Traps
- Using degree instead of radians
- Skipping one-sided limits in piecewise functions
- Not identifying dominant term at infinity
- Blind use of L’Hospital (not in JEE Main syllabus focus)
✔ Fully aligned with JEE Main 2026 Mathematics syllabus
✔ Covers all PYQ patterns
✔ Ready bridge to Continuity & Differentiability
Comments