Skip to main content

Limits – Complete JEE Main 2026 Revision

 

Limits – Complete JEE Main 2026 Revision

A limit describes the value a function approaches as the variable gets close to a point. It does not require the function to be defined at that point.

1. Definition of Limit

$\displaystyle \lim_{x \to a} f(x) = L$

This means $f(x)$ can be made arbitrarily close to $L$ by taking $x$ sufficiently close to $a$.

2. Left & Right Hand Limits

$\displaystyle \lim_{x \to a^-} f(x)$ (Left Hand Limit)

$\displaystyle \lim_{x \to a^+} f(x)$ (Right Hand Limit)

Limit exists iff:

$\displaystyle \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$

JEE Main frequently tests piecewise functions using this.

3. Direct Substitution Rule

If $f(x)$ is continuous at $x=a$:

$\displaystyle \lim_{x \to a} f(x) = f(a)$

Fails when substitution gives indeterminate form.

4. Standard Limits (Core JEE Main)

Trigonometric

$\displaystyle \lim_{x \to 0} \frac{\sin x}{x} = 1$

$\displaystyle \lim_{x \to 0} \frac{\tan x}{x} = 1$

$\displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac12$

$\displaystyle \lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$

Note: $x$ must be in radians.


Exponential & Logarithmic

$\displaystyle \lim_{x \to 0} \frac{e^x-1}{x} = 1$

$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x} = \ln a$

$\displaystyle \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

$\displaystyle \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e$

5. Algebraic Limits

$\displaystyle \lim_{x \to a} \frac{x^n-a^n}{x-a} = na^{n-1}$

$\displaystyle \lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n$

Used in JEE Main simplification-based questions.

6. Limits Involving Infinity

Rational Functions

If degree(numerator) = degree(denominator):

Limit = ratio of leading coefficients

If degree(numerator) < degree(denominator):

Limit = 0

If degree(numerator) > degree(denominator):

Limit = $\infty$ or $-\infty$

7. Indeterminate Forms

Form Resolution
$\frac{0}{0}$Factorization / Rationalization
$\frac{\infty}{\infty}$Divide by highest power
$0\cdot\infty$Convert to fraction
$\infty-\infty$Combine terms
$0^0,1^\infty,\infty^0$Logarithmic method

8. Sandwich (Squeeze) Theorem

If $f(x)\le g(x)\le h(x)$ and

$\lim f(x) = \lim h(x) = L$

Then:

$\displaystyle \lim g(x) = L$

Used in oscillatory functions like $x\sin\frac{1}{x}$.

9. Absolute Value Limits

$\displaystyle \lim_{x\to0} \frac{|x|}{x}$ does not exist

Break absolute values into piecewise form before evaluating.

10. JEE Main Traps

  • Using degree instead of radians
  • Skipping one-sided limits in piecewise functions
  • Not identifying dominant term at infinity
  • Blind use of L’Hospital (not in JEE Main syllabus focus)

✔ Fully aligned with JEE Main 2026 Mathematics syllabus
✔ Covers all PYQ patterns
✔ Ready bridge to Continuity & Differentiability

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…