Skip to main content

Kinetic Theory of Gases & Thermodynamics — Complete Revision (JEE 2026)

 

Kinetic Theory of Gases & Thermodynamics — Complete Revision (JEE 2026)



State eqn (ideal)
$PV = nRT = NkT$
KTG pressure
$P=\dfrac{1}{3}nm\langle v^2\rangle$
RMS / mpd / avg
$v_{rms}=\sqrt{\dfrac{3kT}{m}}$ , $v_{mp}=\sqrt{\dfrac{2kT}{m}}$

Part A — Kinetic Theory of Gases (KTG)

1. Basic assumptions (ideal gas)

  • Molecules are point masses; collisions elastic.
  • No long-range intermolecular forces (except during collisions).
  • Random motion; Newtonian mechanics holds between collisions.
  • Time of collision ≪ time between collisions.

2. Pressure from microscopic motion (derivation sketch)

For N molecules in volume V, number density $n=N/V$. For one molecule with velocity component $v_x$, momentum change on elastic collision with wall gives impulse $2mv_x$. Rate of collisions and averaging over all molecules yields: \[ P = \frac{1}{3} n m \langle v^2\rangle. \] Combining with ideal gas $PV=NkT$ gives $ \tfrac{1}{2}m\langle v^2\rangle = \tfrac{3}{2}kT$.

3. Characteristic speeds

For molecule mass $m$ (kg) and molar mass $M$ (kg·mol⁻¹), and temperature $T$:

  • Most probable speed: \[ v_{mp} = \sqrt{\frac{2kT}{m}} = \sqrt{\frac{2RT}{M}} \]
  • Mean speed: \[ v_{avg} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}} \]
  • Root-mean-square: \[ v_{rms} = \sqrt{\langle v^2\rangle} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}} \]

Ordering: $v_{mp} < v_{avg} < v_{rms}$ (always).

4. Energy per molecule & equipartition

Each degree of freedom contributes $\tfrac{1}{2}kT$ per molecule to average energy. For a molecule with $f$ degrees of freedom: \[ \text{avg energy per molecule} = \frac{f}{2}kT,\qquad U_{\text{(per mole)}} = \frac{f}{2}RT. \] Typical $f$: monoatomic $=3$; diatomic (trans.+rot.) $\approx5$ (vibrational adds 2 per mode at high T).

5. Maxwell–Boltzmann distributions

Velocity (speed) distribution in 3D: \[ f(v)=4\pi\left(\frac{m}{2\pi kT}\right)^{3/2} v^{2} e^{-mv^{2}/2kT}. \] Kinetic-energy distribution (3D): \[ f_E(E)=\frac{2}{\sqrt{\pi}} \frac{1}{(kT)^{3/2}}\sqrt{E}\,e^{-E/kT},\qquad E=\tfrac{1}{2}mv^{2}. \] (General Boltzmann factor: probability ∝ $e^{-E/kT}$; normalize by partition function for full pdf.)

6. Mean free path & collision frequency

Effective molecular diameter $d$ and density $n$: \[ \lambda = \frac{1}{\sqrt{2}\,\pi d^{2} n}. \] Mean collision frequency for one molecule (approx): \[ \nu = \frac{\bar v}{\lambda} = \sqrt{2}\,\pi d^{2} n \bar v, \] where $\bar v$ is mean speed.

7. Transport & real-gas correction (mention)

Real gases deviate: van der Waals equation (molar volume $V_m$): \[ \left(P+\frac{a}{V_m^2}\right)(V_m - b) = RT, \] with critical constants: $T_c=\dfrac{8a}{27Rb},\ P_c=\dfrac{a}{27b^2},\ V_c=3b$.


Part B — Thermodynamics (Core Formula Bank & Insights)

1. Laws — quick

  • Zeroth: thermal equilibrium defines temperature.
  • First: $\Delta Q = \Delta U + W$ (energy conservation).
  • Second: entropy of isolated system does not decrease; reversible processes maximize efficiency.
  • Third: entropy → 0 as $T\to0$ (ideal limit).

2. Internal energy & heat capacities

For ideal gas (per mole): \[ U = \frac{f}{2} RT,\quad C_v = \frac{f}{2}R,\quad C_p = C_v + R,\quad \gamma=\frac{C_p}{C_v}. \] Example: monoatomic $f=3\Rightarrow C_v=\tfrac{3}{2}R,\ C_p=\tfrac{5}{2}R,\ \gamma=\tfrac{5}{3}$.

3. Useful differential identities

For an ideal gas: $dU = C_v dT$, $dH = C_p dT$, with $H=U+PV$ (enthalpy).

4. Standard processes & work

  • Isothermal (T const): $PV=\text{const}$, $\Delta U=0$, \[ W = nRT\ln\frac{V_2}{V_1}. \]
  • Adiabatic (reversible, no heat): $PV^\gamma=\text{const}$, \[ TV^{\gamma-1}=\text{const},\quad W=\frac{P_1V_1-P_2V_2}{\gamma-1}. \]
  • Isochoric: $V$ const → $W=0$, $Q=nC_v\Delta T$.
  • Isobaric: $P$ const → $W=P\Delta V$, $Q=nC_p\Delta T$.

5. Entropy (reversible paths)

Differential: $dS=\dfrac{dQ_{rev}}{T}$. For ideal gas between states: \[ \Delta S = nC_v\ln\frac{T_2}{T_1} + nR\ln\frac{V_2}{V_1} \] (valid for reversible change).

6. Heat engines & Carnot

Efficiency: \[ \eta=\frac{W}{Q_h}=1-\frac{Q_c}{Q_h}. \] Carnot (ideal reversible): \[ \eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}. \]

7. PV diagram quick rules

  • Area under curve = work done by system (integral $P\,dV$).
  • Isotherm slope gentler than adiabatic (adiabatic steeper).
  • Clockwise cycle → net work output; anticlockwise → net work input.

Worked Examples (Quick & Accurate)

Ex 1 — RMS change: If $T$ doubles, how does $v_{rms}$ change?

Solution: $v_{rms}\propto\sqrt{T}$ → factor $\sqrt{2}$. So $v_{rms}\to\sqrt{2}\,v_{rms}$.

Ex 2 — Isothermal work: One mole ideal gas expands isothermally at $T=300\,$K from $V_1$ to $V_2=2V_1$. Find $W$.

Solution: $W=nRT\ln(V_2/V_1)=1\times R\times300\times\ln2\approx (8.314)(300)\ln2\approx1728\ \text{J (approx).}$

Ex 3 — Adiabatic work: For adiabatic compression, relate $T$ and $V$ via $TV^{\gamma-1}=\text{const}$ and compute $W$ via endpoints.

Solution idea: use $P= nRT/V$ and integrate or use $W=(P_1V_1-P_2V_2)/(\gamma-1)$ after computing $P_2$ from adiabatic relation.


High-Yield JEE Traps & How to Avoid Them

  • Units: use SI: $m$ in kg, $M$ in kg·mol⁻¹, $k=1.38\times10^{-23}$ J·K⁻¹, $R=8.314\,$J·mol⁻¹K⁻¹.
  • Degrees of freedom: vibrational modes activate at high T — check context.
  • Sign convention: Work by system positive (expansion). Many errors stem from sign slips.
  • Isothermal ≠ adiabatic: do not mix formulas; check whether heat exchange occurs.
  • Entropy formula validity: only for reversible path or state function independent of path.
  • Mean free path caveat: uses hard-sphere approx; real molecules differ slightly.

Practice Problems (Try First)

  1. Derive $P=\dfrac{1}{3}nm\langle v^2\rangle$ for an ideal monatomic gas (short derivation).
  2. Compute mean kinetic energy per molecule at $T=300\,$K (in eV and J).
  3. One mole ideal gas expands isothermally from 10 L to 20 L at 300 K. Calculate $W$, $\Delta U$, $Q$.
  4. Find mean free path for air at STP assuming effective diameter $d=3.7\times10^{-10}\,$m.
  5. For van der Waals gas with given a and b compute critical constants $T_c,P_c,V_c$.
  6. Show that for monoatomic ideal gas, $C_v=\tfrac{3}{2}R$ and $\gamma=5/3$.
Show Answers & Hints
  1. Standard derivation: consider momentum transfer to wall, use average $v_x^2=\\langle v^2\\rangle/3$, count collisions per unit time.
  2. Mean KE = $\\tfrac{3}{2}kT$. At 300K: $\\tfrac{3}{2}\\times1.38\\times10^{-23}\\times300\\approx6.21\\times10^{-21}$ J ≈ $3.88\\times10^{-2}$ eV.
  3. $W=nRT\\ln2\\approx(8.314)(300)\\ln2\\approx1728$ J; $\\Delta U=0$; $Q=W$ for isothermal.
  4. $n\\approx2.69\\times10^{25}$ m⁻3 at STP → $\\lambda\\approx 1/(\\sqrt2\\pi d^2 n)\\approx 6.7\\times10^{-8}$ m (order of 10⁻⁷ m).
  5. Use $T_c=8a/(27Rb)$ etc. (plug numbers to compute).
  6. Equipartition gives $C_v=3R/2$; then $C_p=C_v+R=5R/2$ → $\\gamma=5/3$.

Final One-line Takeaways

  • KTG links microscopic motion to macroscopic $P,V,T$ — remember $P=\\tfrac{1}{3}nm\\langle v^2\\rangle$ and $\\langle E\\rangle=\\tfrac{3}{2}kT$ for monoatomic.
  • Use polarities: isothermal keeps T constant (ΔU=0); adiabatic keeps Q=0 (PV^γ const).
  • Watch units, DOF activation, and sign conventions — these cost marks in JEE.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…