Skip to main content

JEE Mains 2026 Revision: Parabola Formulas, Concepts, Directrix–Focus Tricks & PYQ Patterns

Home  ›  Mathematics  ›  Parabola Revision

 

Parabola — Complete JEE Revision Capsule

.


1. Definition & Standard Forms

Parabola — locus of a point equidistant from a fixed point (focus) and fixed line (directrix).

Standard forms (vertex at origin):

  • Right opening: $\,y^{2}=4ax\,$ (focus $(a,0)$, directrix $x=-a$)

  • Left opening: $\,y^{2}=-4ax\,$


  • Upward: $\,x^{2}=4ay\,$ (focus $(0,a)$)
  • Downward: $\,x^{2}=-4ay\,$

Vertex form (shifted): $(y-k)^2 = 4a(x-h)$ → vertex $(h,k)$, focus $(h+a,k)$.


2. Quick Geometry & Important Quantities

  • Focus: $(a,0)$ for $y^2=4ax$.
  • Directrix: $x=-a$ for $y^2=4ax$.
  • Axis: the line through vertex and focus (here $x$-axis).
  • Latus rectum: length $=4a$. Endpoints $(a,2a)$ and $(a,-2a)$ for $y^2=4ax$.
  • Eccentricity: $e=1$ (parabola).
  • Reflective property: ray from focus reflects to become parallel to axis.

3. Parametric Form (Powerful for JEE)

For $y^{2}=4ax$ use parameter $t$:

$$ x = at^{2},\qquad y = 2at. $$

Useful relations:

  • Slope at parameter $t$: $$\displaystyle \frac{dy}{dx}=\frac{1}{t}.$$
  • Point corresponding to $t$ has coordinates $(at^{2},2at)$.
  • Eliminate $t$: $t=\dfrac{y}{2a}$ and $x=a\left(\dfrac{y}{2a}\right)^2$ (consistency check).

4. Tangents — three standard forms

Tangent at parameter $t$ (parametric form):

$$ \boxed{\,ty = x + at^{2}\,} $$

Slope form (with slope $m$): since $m=\dfrac{1}{t}$,

$$ \boxed{\,y = mx + \dfrac{a}{m}\,} $$

Point form (through point $(x_1,y_1)$ on parabola):

If $(x_1,y_1)$ lies on $y^2=4ax$, tangent is $$ \boxed{\,yy_1 = a(x + x_1)\,}. $$

Check for tangency: Substitute line $y=mx+c$ into parabola and require discriminant $=0$. That gives $c=\dfrac{a}{m}$ for tangency.


5. Normals

Normal at parameter $t$ (standard):

$$ \boxed{\,y = -tx + 2at + at^{3}\,} $$

Remarks: Equation of normal leads to cubic in $t$ when you ask for normals through a fixed point — typical JEE/theme problem. The three roots correspond to three normals through a point (real/complex depending on point).


6. Chords & Focal Chords

Chord joining points with parameters $t_1,t_2$: the general chord equation (obtain via two-point form) can be written as

$$ (t_1+t_2)\,y = 2x + a(t_1+t_2)t_1 t_2 \quad\text{(use algebraic elimination via parametric coords)}. $$

Focal chord: a chord through focus has parameters $t$ and $-\dfrac{1}{t}$. (Important property: product $t_1t_2=-1$.)

Latus rectum is the focal chord with $t=\pm1$; length $=4a$.


7. Important Lengths & Distances

  • Distance of $(x,y)$ from focus $(a,0)$: $\sqrt{(x-a)^2 + y^2}$.
  • Distance from directrix $x=-a$: $|x + a|$.
  • Point $(x,y)$ lies on parabola iff distances equal: $\sqrt{(x-a)^2+y^2}=|x+a|$.
  • Length of tangent from point $(x_1,y_1)$ (if external): find tangent line and foot; use algebra — preferred: use condition of tangency or power method.

8. Useful Identities & Quick Tricks

  • Product of slopes of two perpendicular tangents: not applicable directly (parabola has no pair of perpendicular tangents everywhere).
  • Midpoint $(X,Y)$ of chord joining $t_1,t_2$ satisfies relation derived from parameters; when $t_1+t_2=0$ chord is focal chord's symmetric case.
  • To find tangent with given slope $m$: use $y=mx+\dfrac{a}{m}$ instantly.
  • To test if line $y=mx+c$ is tangent: check $c=\dfrac{a}{m}$ (for $y^2=4ax$).

9. Common JEE Pain Points & How to Beat Them

  1. Mistaking tangent & chord forms: memorize the three tangent templates (parametric, slope, point forms) and check consistency with point/parameter.
  2. Sign errors with left/up/down opening: switch $a\to -a$ or change variable roles (swap x/y) — always convert to canonical form first.
  3. Normals produce cubic equations: don’t panic — treat cubic in $t$ and use symmetry/tricks (e.g., if normal passes through vertex or focus, special $t$ values appear).
  4. Parametric traps: when using $t$ keep it consistent: $x=at^2$, $y=2at$.
  5. Area/perimeter questions: use parametric integration if needed; param helps compute arc lengths and sector areas elegantly for many JEE problems.

10. Short Worked Examples (High-yield)

Ex 1 — Tangent with given slope: Find equation of tangent to $y^2=4ax$ with slope $m$.

Solution: Use slope form $$y=mx+\dfrac{a}{m}.$$

Ex 2 — Tangent at point: Find tangent at $(at_1^2,2at_1)$.

Solution: Parametric tangent: $$t_1y = x + at_1^2.$$

Ex 3 — Normal through a given point: Find normals to parabola passing through $(h,k)$. (Sketch)

Method: Substitute parametric normal $$y = -tx + 2at + at^3$$ and equate to pass through $(h,k)$ to get cubic in $t$: $$ k = -th + 2at + at^3. $$ Solve cubic (analytically or use symmetry/tricks for special points).


11. Practice Problems (Try first)

  1. Find equation(s) of tangent(s) parallel to line $y=3x+5$ for $y^2=4ax$.
  2. Find equation of normal to $y^2=4ax$ at $(4,4)$ (assume appropriate $a$) and check whether it passes through a given point.
  3. Show that the chord joining $(at_1^2,2at_1)$ and $(at_2^2,2at_2)$ has equation $(t_1+t_2)y = 2x + a t_1 t_2 (t_1+t_2)$ and verify for special case $t_1=-t_2$.
  4. Find locus of midpoints of chords of parabola which are perpendicular to axis.
  5. Length of latus rectum and coordinates of its endpoints for $y^2=12x$.
Show Answers / Hints
  1. Tangents parallel to $y=3x+5$ have slope $m=3$ → use $y=3x + a/3$ and pick $a$ accordingly if given.
  2. Compute $a$ from point lying on parabola then use normal formula to get cubic and check point substitution.
  3. Use parametric coords and two-point form to derive chord eqn; for $t_1=-t_2$ it reduces to $y=0$ (axis) as expected.
  4. Midpoint of horizontal chord has fixed y=0 (for chords perpendicular to axis) — derive parametrically.
  5. For $y^2=12x$, $4a=12\Rightarrow a=3$, latus rectum length $=4a=12$, endpoints $(3,6)$ and $(3,-6)$.

12. One-line Takeaways

  • Memorize parametric form $x=at^2,\ y=2at$ — it unlocks tangents, normals, chords fast.
  • Tangent templates: $ty=x+at^2$, $y=mx+\dfrac{a}{m}$, $yy_1=a(x+x_1)$ — use the one that fits.
  • Normals → cubic in $t$; use symmetry and special values to simplify.
  • Check signs & orientation (left/right/up/down) before applying formulae.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…