Skip to main content

JEE Mains 2026 Revision: Hyperbola Formulas, Eccentricity, Conjugate Hyperbola & JEE Tricks

Home  ›  Mathematics  ›  Hyperbola Revision


Hyperbola — Complete JEE Revision Capsule

Compact, exam-focused hyperbola notes: standard & shifted forms, asymptotes, foci, conjugate axis, parametric forms (trig & hyperbolic), tangents & normals, chord formulae, latus rectum, and JEE traps — all MathJax-ready.


Standard
$\\dfrac{x^2}{a^2} - \\dfrac{y^2}{b^2} = 1$ (transverse axis along x)
Foci & e
$c^2 = a^2 + b^2,\ e=\\dfrac{c}{a}=\\sqrt{1+\\dfrac{b^2}{a^2}}$
Asymptotes
$y=\\pm\\dfrac{b}{a}x$ (centered); combined: $\\dfrac{x^2}{a^2}-\\dfrac{y^2}{b^2}=0$

1. Definition & Standard Forms

Hyperbola is the locus of points for which the absolute difference of distances from two fixed points (foci) is constant: $$|PF_1 - PF_2| = 2a.$$

Standard centered forms:

  • Transverse axis along x: $$\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$$
  • Transverse axis along y: $$\dfrac{y^2}{a^2} - \dfrac{x^2}{b^2} = 1$$

Conjugate hyperbola (swap signs): $$\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = -1$$ (or equivalently $$\dfrac{y^2}{b^2} - \dfrac{x^2}{a^2} = 1$$ )


2. Key Quantities

  • Foci: $(\pm c,0)$ with $$c^2 = a^2 + b^2.$$
  • Eccentricity: $$e = \dfrac{c}{a} = \sqrt{1+\dfrac{b^2}{a^2}} \ (>1).$$
  • Transverse axis length: $2a$; Conjugate axis length: $2b$ (geometric roles differ from ellipse).
  • Latus rectum (through focus, perpendicular to transverse axis): length $$\ell = \dfrac{2b^2}{a}.$$
  • Difference of distances to foci for any point on hyperbola = $2a$ (constant).

3. Asymptotes & Behavior at Infinity

Asymptotes of centered hyperbola $x^2/a^2 - y^2/b^2 = 1$ are straight lines:

$$ y = \pm \dfrac{b}{a} x. $$

Combined asymptote equation (by dropping constant term):

$$ \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 0. $$

Shifted center (h,k): asymptotes: $$ y - k = \pm \dfrac{b}{a}(x - h) $$ for hyperbola $\\dfrac{(x-h)^2}{a^2} - \\dfrac{(y-k)^2}{b^2} = 1$.


4. Parametric Forms

Two commonly used parameterizations (choose by context):

  • Trigonometric (real parameter t): $$ x = a\sec t,\qquad y = b\tan t \quad (t\in\mathbb{R},\ \sec t\ge1). $$
  • Hyperbolic (useful for continuous parameter u): $$ x = a\cosh u,\qquad y = b\sinh u \quad (u\in\mathbb{R}). $$

Derivative (slope) using param (trig): $$\dfrac{dy}{dx} = \dfrac{b\sec t\tan t}{a\sec t} = \dfrac{b}{a}\tan t.$$


5. Tangent Equations (Standard Forms)

Point form: tangent at $(x_1,y_1)$ on hyperbola:

$$ \boxed{\,\dfrac{x x_1}{a^2} - \dfrac{y y_1}{b^2} = 1\,} $$

Parametric tangent (using $t$):

For point $(a\sec t, b\tan t)$: $$ \boxed{\,\dfrac{x\sec t}{a} - \dfrac{y\tan t}{b} = 1\,}. $$

Slope form: For line $y=mx+c$ to be tangent, discriminant = 0 ⇒

$$ \boxed{\,c^2 = a^2 m^2 - b^2\,}. $$ So tangents with slope $m$ are $$ y = mx \pm \sqrt{a^2 m^2 - b^2}\,, $$ provided $a^2 m^2 \ge b^2$.


6. Normals & Polars

Normal at point $(x_1,y_1)$: one convenient form (algebraic):

$$ \boxed{\,\dfrac{a^2 x}{x_1} - \dfrac{b^2 y}{y_1} = a^2 - b^2\,} $$ (Can be rearranged to point-slope form using slope $m_n = -\dfrac{a^2 y_1}{b^2 x_1}$ appropriately.)

Polar (T=0): For hyperbola S: $x^2/a^2 - y^2/b^2 -1=0$, the polar of $(x_1,y_1)$ is $$\dfrac{x x_1}{a^2} - \dfrac{y y_1}{b^2} = 1\ (\,\text{same as tangent if }(x_1,y_1)\text{ lies on curve}\,).$$


7. Chords & Focal Chords

Chord joining parameter values $t_1,t_2$ (trig param) can be written via elimination of parameters. For focal chords (through focus) parameters satisfy special relations analogous to ellipse.

Focal chord: if a chord passes through focus $(c,0)$ then parameters satisfy relation (use param forms & eliminate) — many JEE problems ask specific numeric cases; treat algebraically using param coordinates.

Latus rectum: through focus; its half-length (measured parallel to conjugate axis) = $\\dfrac{b^2}{a}$ so full length $$\\ell = \\dfrac{2b^2}{a}.$$


8. Conjugate Hyperbola & Relations

Conjugate hyperbola of $\\dfrac{x^2}{a^2} - \\dfrac{y^2}{b^2} = 1$ is $\\dfrac{y^2}{b^2} - \\dfrac{x^2}{a^2} = 1$. Their asymptotes are same; foci swap roles between transverse & conjugate axes.

Product of equations of hyperbola and its conjugate gives central rectangular hyperbola of second degree (useful in some problems).


9. Region & Point Condition

Define function for point $P(x_1,y_1)$:

$$ S = \\dfrac{x_1^2}{a^2} - \\dfrac{y_1^2}{b^2} - 1. $$

If $S=0$ on hyperbola, $S>0$ in region of transverse axis (outside branches), $S<0 between="" branches="" carefully="" checks="" conjugate="" in="" inside="" p="" problems.="" region="" sign="" the="" use="">


10. Useful Identities & Quick Tricks

  • Difference of distances to foci = $2a$ for any point on hyperbola.
  • Equation of asymptotes (shifted center): find by linearizing highest degree terms.
  • To check tangency of $y=mx+c$: verify $c^2 = a^2 m^2 - b^2$ and $a^2 m^2 \ge b^2$.
  • For rotated hyperbolas ($Bxy$ term present), rotate axes using $\\tan 2\\theta = \\dfrac{B}{A-C}$.

11. Worked Examples (High-yield)

Example 1: For hyperbola $\\dfrac{x^2}{9} - \\dfrac{y^2}{4} = 1$, find foci, asymptotes and eccentricity.

Solution: $a^2=9\\Rightarrow a=3$, $b^2=4\\Rightarrow b=2$. $c^2=a^2+b^2=9+4=13\\Rightarrow c=\\sqrt{13}$. $e=c/a=\\dfrac{\\sqrt{13}}{3}$. Asymptotes: $y=\\pm\\dfrac{b}{a}x=\\pm\\dfrac{2}{3}x$.

Example 2: Tangent(s) with slope $m=1$ to hyperbola $\\dfrac{x^2}{16}-\\dfrac{y^2}{9}=1$.

Solution: Use $c^2=a^2m^2-b^2 =16\\cdot1 - 9 =7$. So tangents: $y=x\\pm\\sqrt7$ (valid since $16\\cdot1 \\ge 9$).

Example 3: Find equations of asymptotes for shifted hyperbola $\\dfrac{(x-2)^2}{4} - \\dfrac{(y+1)^2}{1} = 1$.

Solution: Asymptotes: $y+1 = \\pm \\dfrac{1}{2}(x-2)$ → or $y = -1 \\pm \\dfrac{1}{2}(x-2)$.


12. JEE Traps & How to Avoid

  • Trap: mixing ellipse sign rules — hyperbola has minus between x^2 and y^2; check which term is positive to know transverse axis.
  • Trap: forget asymptote condition $a^2 m^2 \\ge b^2$ for real tangents with slope $m$.
  • Trap: sign of S for point location — memorize interpretation for branches vs interior between branches.
  • Tip: use parametric forms for tangents & normals; hyperbolic param often simplifies integrals or continuous variants.

13. Practice Problems (Try first)

  1. Find equation of tangent at point corresponding to $t=\\pi/4$ (trig param) on $\\dfrac{x^2}{a^2}-\\dfrac{y^2}{b^2}=1$.
  2. Show that asymptotes of $\\dfrac{x^2}{9}-\\dfrac{y^2}{4}=1$ are $y=\\pm\\tfrac{2}{3}x$ and verify intersection at origin.
  3. Find latus rectum length for $\\dfrac{x^2}{a^2}-\\dfrac{y^2}{b^2}=1$.
  4. For hyperbola $\\dfrac{x^2}{4}-\\dfrac{y^2}{1}=1$, find tangent(s) parallel to $y=3x+1$.
  5. Find equation of hyperbola with foci at $(\\pm5,0)$ and transverse axis length $8$.
Show Answers & Hints
  1. Parametric point: $(a\\sec t, b\\tan t)$; substitute into point form tangent.
  2. Compute as in worked example 1.
  3. Use formula $\\ell=\\dfrac{2b^2}{a}$.
  4. Solve condition $c^2 = a^2 m^2 - b^2$ with $m=3$; check feasibility.
  5. Given foci ±5 ⇒ c=5, transverse 2a=8 ⇒ a=4 ⇒ b^2=c^2-a^2=25-16=9 ⇒ hyperbola: $x^2/16 - y^2/9 = 1$.

14. One-line Takeaways

  • Sign between squared terms tells which axis is transverse (positive term's variable gives transverse axis direction).
  • Asymptotes are your first tool — linearize the highest-degree part for quick answers.
  • Parametric forms (sec–tan or cosh–sinh) speed up tangent/normal problems.
  • Remember $c^2=a^2+b^2$ and latus rectum $=2b^2/a$ — these recur in JEE.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…