Skip to main content

Ellipse – JEE Revision Series | Standard Form, Eccentricity, Properties & Tricks

Home  ›  Mathematics  ›  Ellipse Revision

 

Ellipse — Complete JEE Revision Capsule

Dense, exam-focused ellipse notes: standard forms, parametric machinery, tangents & normals, focal & directrix properties, director circle, chord formulas, tricks, common pitfalls and practice problems — all MathJax-ready.


Standard
$\\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$ (major axis along x if $a>b$)
Foci & eccentricity
$c^2=a^2-b^2,\ e=\\dfrac{c}{a}=\\sqrt{1-\\dfrac{b^2}{a^2}}$
Area & latus rectum
Area $=\\pi ab$, Latus rectum $=\\dfrac{2b^2}{a}$

1. Standard Forms & Basic Definitions

Canonical ellipse (center at origin) with major axis along x: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\quad (a>b>0) \]

Graph of an ellipse

Major axis length = $2a$, minor axis length = $2b$, semi-major = $a$, semi-minor = $b$.

Foci: $(\pm c,0)$ where $c^2=a^2-b^2$.
Eccentricity: $e=\dfrac{c}{a}=\sqrt{1-\dfrac{b^2}{a^2}}$ (for $a>b$).

Directrices: $x=\pm \dfrac{a}{e}$ (lines perpendicular to major axis).

Vertical major axis: swap $x\leftrightarrow y$: \[ \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad (a>b) \]


2. Parametric Form & Derivatives

Parametric coordinates (excellent for tangents, normals, lengths):

$$ x = a\cos t,\qquad y = b\sin t,\qquad t\in[0,2\pi). $$

Derivative (slope) at $(x_1,y_1)$:

$$ \frac{dy}{dx} = -\frac{b^2 x_1}{a^2 y_1} \quad\text{(provided } y_1\neq0\text{)}. $$

Using param: $$\frac{dy}{dx} = -\frac{b}{a}\cot t.$$


3. Tangent Equations (Common Forms)

Point form (at $(x_1,y_1)$ on ellipse):

$$ \boxed{\,\dfrac{x x_1}{a^2} + \dfrac{y y_1}{b^2} = 1 \,} $$

Parametric form (at parameter $t$):

$$ \boxed{\,\dfrac{x\cos t}{a} + \dfrac{y\sin t}{b} = 1\,} $$

Slope form (line $y=mx+c$ tangent iff):

$$ \boxed{\,c^2 = a^2 m^2 + b^2\,} $$ So tangents with slope $m$ are $y=mx \pm \sqrt{a^2 m^2 + b^2}$.

Condition: If $y=mx+c$ intersects ellipse, discriminant $=0$ for tangency; use above relation.


4. Normal Equations

Normal at parameter $t$ (useful in 3-normal problems):

$$ \boxed{\, a\sin t \, x - b\cos t \, y + (a^2-b^2)\sin t\cos t = 0 \,} $$

(One may also derive normal using slope $m_n = -\dfrac{a^2}{b^2}\dfrac{x_1}{y_1}$ and point-slope.)


5. Latus Rectum, Area, Perimeter (Formulas)

  • Latus rectum (through focus): length $= \dfrac{2b^2}{a}$.
  • Area: $A = \pi a b$.
  • Approx perimeter (Ramanujan): $$ P \approx \pi\left[3(a+b) - \sqrt{(3a+b)(a+3b)}\right]. $$

6. Focal Properties & Directrix

Definition in terms of focus & directrix (eccentricity $e$):

Distance to focus = $e\times$ distance to corresponding directrix.

Directrices (for major axis along x): \[ x = \pm \frac{a}{e}. \]

Reflection property: Ray from one focus reflects to the other (sum of distances to foci is constant = $2a$).


7. Director Circle & Orthogonality

Director circle: locus of points from which pair of tangents to ellipse are orthogonal:

$$ \boxed{\, x^2 + y^2 = a^2 + b^2 \,} $$

Orthogonal circles: Two conics orthogonal if their tangents at intersection are perpendicular; for circles use condition, for conics use gradients.


8. Chords, Chord of Contact & Midpoint Locus

Chord joining parameters $t_1,t_2$ (param method): midpoint and chord relations can be derived; product/sum of parameters used for focal chords.

Chord of contact from point $(x_1,y_1)$ (pair of tangents from an external point):

$$ \boxed{\,\dfrac{x x_1}{a^2} + \dfrac{y y_1}{b^2} = 1 \,} \quad\text{(same as tangent template, with }(x_1,y_1)\text{ on polar).} $$

Midpoint locus: Many problems ask locus of midpoints of parallel chords → result is a line parallel to corresponding axis. For example, midpoints of chords parallel to y-axis have x = constant.


9. Condition for Point & Regions

For point $P(x_1,y_1)$ compute:

$$ S = \dfrac{x_1^2}{a^2} + \dfrac{y_1^2}{b^2} - 1. $$

If $S<0 ellipse="" inside="" on="" point="">0$ outside ellipse.


10. Useful Identities & Quick Tricks

  • Sum of distances to foci from any point on ellipse $=2a$ (constant).
  • Tangent at $(x_1,y_1)$ can be written quickly using point form: substitute in formula.
  • To get tangent with given slope $m$, use $c^2=a^2m^2+b^2$ → find $c$.
  • For intersection with line $y=mx+c$, solve quadratic; D<0 none, D=0 tangent, D>0 secant.
  • When converting rotated ellipses (Bxy term present), use rotation of axes: $\tan 2\theta = \dfrac{B}{A-C}$.

11. Worked Examples (High-yield)

Example 1: For ellipse $\\dfrac{x^2}{9}+\\dfrac{y^2}{4}=1$, find foci, eccentricity, latus rectum.

Solution: $a^2=9\\Rightarrow a=3$, $b^2=4\\Rightarrow b=2$. $c^2=a^2-b^2=9-4=5\\Rightarrow c=\\sqrt5$. $e=c/a=\\dfrac{\\sqrt5}{3}$. Latus rectum $=\\dfrac{2b^2}{a}=\\dfrac{2\\cdot4}{3}=\\dfrac{8}{3}$.

Example 2: Find tangent at point corresponding to $t=\\pi/6$ on $\\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$.

Solution: Parametric point: $x=a\\cos t=a(\\sqrt3/2)$, $y=b\\sin t=b/2$. Use point form: $$\\dfrac{x x_1}{a^2}+\\dfrac{y y_1}{b^2}=1.$$ Simplify to obtain explicit tangent.

Example 3: Tangent with slope $m=1$ to ellipse $\\dfrac{x^2}{16}+\\dfrac{y^2}{9}=1$ → find equation(s).

Solution: Use $c^2 = a^2 m^2 + b^2 = 16\\cdot1 + 9 =25$. So $c=\\pm5$. Tangents: $y=x\\pm5$.


12. Common JEE Traps & How to Avoid

  • Trap: Confusing a & b (which is larger) — always set $a$ as semi-major and check $a>b$ or rotate axes accordingly.
  • Trap: Wrong directrix sign/position — use $x=\\pm a/e$ for horizontal major axis.
  • Trap: Using circle formulas — ellipses have sum of distances constant, not product.
  • Tip: For chord-midpoint loci use parametric midpoint formula; many past JEE problems follow this route.

13. Practice Problems (Try first)

  1. Find equation of tangent to $\\dfrac{x^2}{25}+\\dfrac{y^2}{9}=1$ at point where $t=\\pi/4$.
  2. For ellipse $\\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$, show that product of slopes of tangents at ends of any focal chord = \\(-\\dfrac{b^2}{a^2}\\).
  3. Find director circle of ellipse $\\dfrac{x^2}{16}+\\dfrac{y^2}{4}=1$.
  4. Find equation(s) of tangent(s) to $\\dfrac{x^2}{9}+\\dfrac{y^2}{4}=1$ parallel to line $y=2x+3$.
  5. Find the length of latus rectum for ellipse with equation $\\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$.
Show Answers & Hints
  1. Parametric point: $x=a\\cos t, y=b\\sin t$; substitute into point form tangent.
  2. Use param for focal chord ($t_1t_2=-1$) and slopes $m_i=-\\dfrac{b^2}{a^2}\\dfrac{x_i}{y_i}$ or use algebraic elimination.
  3. Director circle: $x^2+y^2=a^2+b^2$ → here $=16+4=20$.
  4. Tangents parallel to slope 2: use $c^2=a^2 m^2 + b^2$ with $m=2$ to find $c$ and write $y=2x\\pm c$.
  5. Latus rectum $=\\dfrac{2b^2}{a}$ (derive from focal chord properties).

14. One-line Takeaways

  • Always check which axis is major — set $a$ as semi-major by convention.
  • Parametric form $x=a\\cos t, y=b\\sin t$ is your fastest tool for tangents/normals/lengths.
  • Focal property: sum of distances to foci = $2a$; directrices at $x=\\pm a/e$.
  • Director circle: $x^2+y^2=a^2+b^2$ — quick test for orthogonal tangents.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…