Skip to main content

Continuity & Differentiability – Complete JEE Main 2026 Revision

 

 

Continuity & Differentiability – Complete JEE Main 2026 Revision

This chapter connects limits → graphs → calculus. Most JEE errors happen due to confusing continuity with differentiability.

1. Continuity

A function $f(x)$ is continuous at $x=a$ if and only if:

$\displaystyle \lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)=f(a) $

All three conditions must hold simultaneously.

Types of Discontinuity (JEE Favourite)

Type Description
Removable LHL = RHL but ≠ f(a)
Jump LHL ≠ RHL
Infinite Limit → ±∞
Oscillatory No definite approach value

📌 Polynomials, exponential, trigonometric functions are continuous everywhere.

2. Differentiability

A function is differentiable at $x=a$ if:

$\displaystyle \lim_{h\to0}\frac{f(a+h)-f(a)}{h} $ exists.

✔ Differentiability ⇒ Continuity ❌ Continuity ⇏ Differentiability

Non-Differentiable Points (Very Important)

  • Sharp corners (e.g. $|x|$ at $0$)
  • Cusps
  • Vertical tangents
  • Discontinuity points

3. Modulus Function

$f(x)=|x|$ is:

  • Continuous everywhere
  • Not differentiable at $x=0$

General rule:

$|x-a|$ is not differentiable at $x=a$

4. Standard Derivatives (Must Memorize)

$\frac{d}{dx}(x^n)=nx^{n-1}$

$\frac{d}{dx}(\sin x)=\cos x$

$\frac{d}{dx}(\cos x)=-\sin x$

$\frac{d}{dx}(e^x)=e^x$

$\frac{d}{dx}(\ln x)=\frac{1}{x}$

5. Chain Rule

If $y=f(g(x))$ then:

$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$

Extensively used in composite functions.

6. Logarithmic Differentiation

Used when variables appear in both base and power.

$y=x^x \Rightarrow \ln y=x\ln x$

$\frac{1}{y}\frac{dy}{dx}=\ln x+1$

7. Implicit Differentiation

When $y$ is not explicitly defined.

$x^2+y^2=1$

$\frac{dy}{dx}=-\frac{x}{y}$

8. Left & Right Derivatives

For differentiability:

LHD = RHD

Used heavily in piecewise functions.

9. JEE Main Traps & Pain Points

  • Assuming continuity implies differentiability
  • Forgetting modulus breakdown
  • Ignoring one-sided derivatives
  • Skipping domain restrictions

10. 10-Second Recall Ladder

  • Differentiable ⇒ Continuous
  • Not differentiable at sharp points
  • Check LHD = RHD
  • Modulus breaks slope

✔ Fully aligned with JEE Main 2026 syllabus
✔ Covers all PYQ logic
✔ Foundation for AOD, Tangents & Graphs

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…