Skip to main content

Complex Numbers — Mathematics Complete JEE Mains 2026 Revision Capsule

Home  ›  Mathematics  ›  Complex numbers Revision


Complex Numbers — Complete JEE Mains 2026 Revision Capsule

Compact, exam-focused capsule for complex numbers. Learn the algebra, geometry, identities, De Moivre’s rules, roots of unity, loci in Argand plane, and typical JEE question patterns — all formulas in MathJax for crisp rendering.


Cartesian
$z=a+ib$, $\Re(z)=a$, $\Im(z)=b$, $|z|=\sqrt{a^2+b^2}$
Polar / Euler
$z=r(\cos\theta+i\sin\theta)=re^{i\theta}$
De Moivre & Roots
$z^n = r^n e^{in\theta}$, $n$th roots given by $r^{1/n}e^{i(\theta+2k\pi)/n}$

1. Basics & Notation

Complex number: $z=a+ib$ where $a,b\in\mathbb{R}$ and $i^2=-1$. Conjugate: $\bar z = a-ib$. Modulus: $|z|=\sqrt{a^2+b^2}$. Argument: $\arg z = \theta$ where $z$ corresponds to point $(a,b)$ with $\theta=\tan^{-1}(b/a)$ (careful with quadrant).


2. Algebraic Operations & Properties

Add / Subtract: componentwise: $(a+ib)\pm(c+id)=(a\pm c)+i(b\pm d)$.

Multiply: \[ (a+ib)(c+id) = (ac-bd) + i(ad+bc) \]

Divide: rationalize by conjugate: \[ \frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{c^2+d^2}. \]

Conjugate rules: \[ \overline{z+w}=\bar z + \bar w,\quad \overline{zw}=\bar z\bar w,\quad z\bar z=|z|^2. \]


3. Polar & Euler Form; De Moivre

Polar: $z=r(\cos\theta+i\sin\theta)$ where $r=|z|$, $\theta=\arg z$. Euler: $z=re^{i\theta}$.


De Moivre: \[ [r(\cos\theta+i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta). \]

Roots (n-th roots): if $z=re^{i\theta}$, solutions of $w^n=z$ are \[ w_k = r^{1/n}\,e^{i(\theta+2k\pi)/n},\quad k=0,1,\dots,n-1. \]

Roots of unity: $1^{1/n}$ are $e^{2\pi i k/n}$; they form regular n-gon on unit circle. Sum of all n-th roots of unity = 0.


4. Geometry & Loci on Argand Plane

Interpret $z=x+iy$ as point $(x,y)$. Common loci:

  • Circle: $|z-a|=R$ is circle center $a$ radius $R$.
  • Perpendicular bisector: $|z-z_1|=|z-z_2|$ (locus of points equidistant → line).
  • Line (Cartesian): $\Re(\bar a z) = c$ represents straight line.
  • Arg condition: $\arg\left(\dfrac{z-z_1}{z-z_2}\right)=\alpha$ → locus is arc/angle subtended by segment $z_1z_2$. For $\alpha=\pm\pi/2$ get circle with diameter.

Distance: $|z_1-z_2|$ gives Euclidean distance between points.


5. Transformations (Affine): $w=az+b$

Mapping $w=az+b$ (with $a=re^{i\phi}$):

  • Scale by $r$ (dilation) if $|a|=r\neq1$.
  • Rotate by $\phi$ (argument adds $\phi$).
  • Translate by $b$ (adds vector $b$).
  • These combined give a similarity transform: rotation + scaling + translation.
    Transformation of a complex number


Special: $w=\bar z$ is reflection across real axis; $w=-z$ rotation by $\pi$ about origin.


6. Useful Identities & Inequalities

  • Triangle inequality: $|z_1+z_2|\le |z_1|+|z_2|$.
  • Reverse triangle: $||z_1|-|z_2||\le |z_1-z_2|$.
  • Polar multiplication: $|z_1 z_2|=|z_1||z_2|$, $\arg(z_1 z_2)=\arg z_1+\arg z_2$ (mod $2\pi$).
  • Arg relation: $\arg\left(\dfrac{z_1}{z_2}\right)=\arg z_1 - \arg z_2$.

7. Complex Equations — Common Patterns

Typical equations and solution techniques:

  • Real/Imag parts: Write $z=x+iy$, equate real and imaginary parts.
  • Conjugate tricks: Use $\bar z$ to remove imaginary parts, or multiply by conjugate.
  • Modulus equations: $|z-a|=c$ → circle; $|z-a|=|z-b|$ → perpendicular bisector.
  • Arg equations: Convert to tangent or use ratio $\frac{z-a}{z-b}$ and equate argument.
  • Polynomial equations: Use factorization, roots of unity, symmetry.

8. Roots of Unity & Regular Polygons

n-th roots of unity: solutions of $z^n=1$ are: \[ \omega_k = e^{2\pi i k/n},\quad k=0,1,\dots,n-1. \]

Properties:

  • They lie on unit circle, vertices of regular n-gon.
  • Sum $\sum_{k=0}^{n-1} \omega_k = 0$.
  • Primitive root: $\omega=e^{2\pi i /n}$ and powers give others.

9. Geometry Problems — Area / Perimeter

Area of triangle with vertices $z_1,z_2,z_3$: \[ \text{Area} = \frac12 \left| \Im\left( (z_2-z_1)\overline{(z_3-z_1)} \right) \right|. \]

Perpendicularity / parallelism: vectors $z_2-z_1$ and $z_3-z_1$:

  • Perpiff: $(z_2-z_1)\overline{(z_3-z_1)}$ is purely imaginary.
  • Parallel: quotient is real and positive.

10. Worked Examples (Step-by-step)

Example 1: If $z=3+4i$, find $|z|$, $\arg z$, and $\bar z$.

Solution: $|z|=\sqrt{3^2+4^2}=5$. $\arg z=\tan^{-1}(4/3)$. $\bar z=3-4i$.

Example 2: Solve $z + \bar z = 6$ and $z\bar z = 25$.

Solution: Let $z=x+iy$. Then $2x=6\Rightarrow x=3$. And $x^2+y^2=25\Rightarrow 9+y^2=25\Rightarrow y^2=16\Rightarrow y=\pm4$. So $z=3\pm4i$.

Example 3: Find the cube roots of 8 (i.e., solve $w^3=8$).

Solution: $8=8e^{i0}$, so roots: $w_k=8^{1/3} e^{i(0+2k\pi)/3}=2e^{2\pi i k/3}$ for $k=0,1,2$. Explicit: $2,\ 2e^{2\pi i/3},\ 2e^{4\pi i/3}$.


11. JEE Traps & Quick Tips

  • Quadrant care: $\arg z = \tan^{-1}(b/a)$ needs quadrant correction.
  • Multi-valued roots: $z^{1/n}$ provides n distinct roots — include all k values.
  • Don't treat $\sqrt{z}$ like real case: complex square roots have two values; choose principal if defined.
  • Dot vs complex product: $(\sqrt{z_1 z_2})$ is not generally equal to $\sqrt{z_1}\sqrt{z_2}$ in a branch; use polar to handle consistency.
  • Use conjugate: equations mixing $z$ and $\bar z$ usually give real/imag conditions; convert to x,y.

12. Practice Problems (Try first)

  1. Find all complex z such that $|z-1|=2$ and $\arg(z)=\pi/4$.
  2. Solve $z^2 + (1-2i)z + (2-2i)=0$.
  3. Find points z such that $\arg\left(\dfrac{z-1}{z+1}\right)=\pi/2$ (geometric locus).
  4. Show that the centroid of triangle with vertices $z_1,z_2,z_3$ is $\dfrac{z_1+z_2+z_3}{3}$.
  5. Find sum of all 6th roots of unity multiplied by their conjugates.
Show Answers & Hints
  1. Point on circle of radius 2 centered at 1 with argument $\pi/4$ ⇒ $z=1+2e^{i\pi/4}=1+2\left(\dfrac{\sqrt2}{2}+i\dfrac{\sqrt2}{2}\right)=1+\sqrt2+i\sqrt2$.
  2. Solve quadratic using formula or convert to x+iy; roots are complex — use quadratic formula directly in complex arithmetic.
  3. $\arg\left(\dfrac{z-1}{z+1}\right)=\pi/2$ means $\dfrac{z-1}{z+1}$ is purely imaginary ⇒ equate real part to 0 and find circle (Apollonius-type locus) — result is circle passing through ±1.
  4. Centroid: average of vertices follows from vector addition; trivial from coordinates.
  5. 6th roots of unity are $\omega^k$. Each multiplied by its conjugate gives $1$ (since $|\omega^k|=1$) so sum = 6.

13. One-line Takeaways

  • Switch freely between Cartesian and polar forms — each simplifies different problems.
  • Use conjugates to handle real/imag constraints; use polar for multiplication, powers, and roots.
  • Roots of unity and symmetry solve many polynomial problems elegantly.
  • Argand geometry often converts tricky algebra into clean geometry — visualize!

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…