Skip to main content

Binomial Theorem — Complete JEE Mains 2026 Revision Capsule

Home  ›  Mathematics  ›  Binomial Theorem Revision

 

StudyBeacon

Binomial Theorem — Complete JEE Mains 2026 Revision Capsule

This capsule collects every formula and identity you need for JEE Mains: finite binomial theorem, coefficients, combinatorial identities, Newton’s generalized binomial, approximations, problem patterns, and practice questions — all equations in LaTeX.


1. Finite Binomial Theorem (Standard)


For any integer $n\\ge 0$, $$ (x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{\,n-k} y^{\,k} $$ where $$ \binom{n}{k} = \frac{n!}{k!(n-k)!}. $$

General term (T_{k+1}):

$$ T_{k+1} = \binom{n}{k} x^{\,n-k} y^{\,k}, \qquad k = 0,1,\dots,n. $$

Special cases:

  • $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$
  • Coefficient of $x^r$ in $(1+x)^n$ is $\binom{n}{r}$.
  • Sum of coefficients: $(1+1)^n = 2^n$.
  • Alternating sum: $(1-1)^n = 0$ for $n\\ge 1$ (useful for cancellations).

2. Binomial Coefficient Identities & Pascal

Pascal identity:

$$ \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}. $$

Symmetry:

$$ \binom{n}{k} = \binom{n}{n-k}. $$

Summation identities:

  • $$ \sum_{k=0}^n \binom{n}{k} = 2^n. $$
  • $$ \sum_{k=0}^n (-1)^k \binom{n}{k} = 0 \quad (n\ge1). $$
  • $$ \sum_{k=0}^n k\binom{n}{k} = n2^{n-1}. $$
  • $$ \sum_{k=0}^n k^2\binom{n}{k} = n(n+1)2^{n-2}. $$
  • $$ \sum_{k=0}^n \binom{r+k}{k} = \binom{r+n+1}{n} \quad (\text{hockey-stick identity}). $$

Combinatorial meaning: $\binom{n}{k}$ = number of ways to choose $k$ items from $n$ (order irrelevant).


3. Useful Properties & Relations

  • $$ \binom{n}{0} = \binom{n}{n} = 1. $$
  • $$ \binom{n}{1} = \binom{n}{n-1} = n. $$
  • $$ \binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}. $$
  • For integer $k>n$, $\binom{n}{k}=0$ (conventionally).
  • $$ \binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}. $$

4. Multinomial Theorem (Brief)

For $n\\ge0$ and variables $x_1,\\dots,x_m$, $$ (x_1 + x_2 + \dots + x_m)^n = \sum_{k_1+\\dots+k_m = n} \frac{n!}{k_1!k_2!\\cdots k_m!} \prod_{i=1}^m x_i^{k_i}. $$

Multinomial coefficients reduce to binomial when $m=2$.


5. Coefficient Extraction & Tricks

Coefficient of $x^r$ in $(ax + b)^n$:

$$ [x^r](ax + b)^n = \binom{n}{r} a^r b^{n-r}. $$

Coefficient in product expansions: Use convolution: if $(1+x)^n(1+x)^m = (1+x)^{n+m}$, coefficients add via convolution.

Finding particular coefficient: Replace $x$ by $x/y$ etc. — common trick: to get coefficient of $x^r$ in $(1+2x)^n(1+3x)^m$ expand each or use generating functions / convolution.


6. Newton’s Generalized Binomial Theorem (Non-integer exponents)

For real (or complex) $\alpha$ and $|x|<1 alpha-1="" alpha-k="" alpha="" binom="" binomial="" cdots="" coefficient="" frac="" generalized="" is="" k="" p="" sum_="" the="" where="" x="">

First few terms:

$$ (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \cdots $$

Convergence: the series converges for $|x|<1 a="" alpha="" binomial="" finite="" for="" integer="" it="" non-negative="" p="" terminates="">

Special expansions (useful):

  • $(1+x)^{-1} = 1 - x + x^2 - x^3 + \\cdots$ for $|x|<1 li="">
  • $(1+x)^{1/2} = 1 + \\tfrac{1}{2}x - \\tfrac{1}{8}x^2 + \\tfrac{1}{16}x^3 + \\cdots$ for $|x|<1 li="">

7. Approximations, Inequalities & Useful Bounds

  • Binomial bounds: For $0 \\le k \\le n$, $$ \binom{n}{k} \\le \frac{n^k}{k!}. $$ Useful when estimating sizes.
  • Dominant term idea: For $(1+x)^n$ with $n$ large and small $x$, main contribution near $k\\approx nx/(1+x)$ (useful for combinatorial heuristics).
  • Using binomial to approximate $(1+x)^n$: Keep first two/three terms when $x$ small and $n$ moderate.

8. JEE Traps & Shortcuts

  • Trap: forgetting symmetry — coefficient of $x^r$ equals coefficient of $x^{n-r}$ in $(1+x)^n$ because $\binom{n}{r} = \binom{n}{n-r}$.
  • Trap: sign errors in alternating expansions: $(1-1)^n = 0$ cancels everything — but if replaced by $(1-1)^n f(n)$ watch where $f$ depends on $k$.
  • Shortcut: use $(1+1)^n$ to get sum of coefficients; use derivative w.r.t $x$ on $(1+x)^n$ to get sums of $k\binom{n}{k}$ etc: $$ \frac{d}{dx}(1+x)^n = n(1+x)^{n-1} = \sum_{k=0}^n k\binom{n}{k}x^{k-1}. $$
  • Trap: coefficient of $x^r$ in product of binomials sometimes easier via generating functions rather than full expansion.
  • Tip: For coefficient of $x^m$ in $(ax+ b)^n$, factor out $b^n$ and convert: coefficient = $b^{n-m}a^m\binom{n}{m}$ after appropriate scaling.

9. Worked Examples (High-yield)

Example 1: Find coefficient of $x^{5}$ in $(1+x)^{10}$.

Solution: Coefficient = $\binom{10}{5} = 252$.

Example 2: Coefficient of $x^3$ in $(2x-3)^6$.

Solution: Use general term: $T_{k+1} = \binom{6}{k} (2x)^{6-k}(-3)^k$. For $x^3$ we need $6-k = 3 \\Rightarrow k=3$. Coefficient = $\binom{6}{3} 2^3 (-3)^3 = 20\\cdot8\\cdot(-27) = -4320$.

Example 3 (Sum using binomial): Evaluate $\sum_{k=0}^{n} k\binom{n}{k}$.

Solution: Using derivative method at $x=1$: $\sum k\binom{n}{k} = n2^{n-1}$.


10. Practice Problems (Try first)

  1. Find coefficient of $x^4$ in $(1+2x)^8$.
  2. Find coefficient of $x^7$ in $(x+1)^{15}$. (Quick)
  3. Evaluate $\sum_{k=0}^{n} (-1)^k \binom{n}{k} k^2$.
  4. Expand $(1+x)^{1/2}$ up to $x^3$ term using Newton’s generalized theorem.
  5. Find constant term in $(x - \\frac{1}{x})^{10}$.
  6. Show that $\sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}$.
Show Answers & Hints
  1. Coefficient = $\binom{8}{4} 2^4 = 70\\cdot16 = 1120$.
  2. Coefficient = $\binom{15}{7} = 6435$.
  3. Use generating function and derivative: $\sum (-1)^k k^2\binom{n}{k}$ equals $n2^{n-2}(n+1)$ times a sign — easier: compute via $(1-1)^n$ derivatives; final result = $0$ for first derivative-based sums, but compute directly: $\sum (-1)^k k\binom{n}{k} = 0$ and $\sum (-1)^k k^2\binom{n}{k} = 0$ for $n\\ge2$ (use identities).
  4. $(1+x)^{1/2} = 1 + \\tfrac{1}{2}x - \\tfrac{1}{8}x^2 + \\tfrac{1}{16}x^3 + \\cdots$ so up to $x^3$ keep first four terms.
  5. Constant term in $(x - 1/x)^{10}$: Expand binomial: term with $x^{10-2k}$ and set exponent 0 → $10-2k=0 \\Rightarrow k=5$. Coefficient = $\binom{10}{5}(-1)^5 = -252$.
  6. Use coefficient of $x^n$ in $(1+x)^{2n}$ equals $\sum_{k=0}^n \binom{n}{k}\binom{n}{n-k} = \sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}$.

11. One-line Takeaways

  • Finite binomial theorem for integer exponents; Newton’s generalized for real exponents with $|x|<1 li="">
  • Use Pascal identity & symmetry for coefficient manipulations.
  • Derivative of generating function yields sums involving $k, k^2,$ etc.
  • Telescoping / convolution are your friends for product expansions and sums.

Comments

Popular posts from this blog

Chemistry - periodic table PYQ 2022

Q.The first ionization enthalpy of Na, Mg and Si, respectively, are: 496, 737 and 786 kJ mol¹. The first ionization enthalpy (kJ mol¹) of Al is:                                                         ( JEE mains 2022) 1. 487  2.  768 3. 577 4. 856 Show Answer Ans:- [c] I. E: Na < Al < Mg < Si  .. 496 <IE (Al) < 737  Option (C), matches the condition .  i.e IE (Al) = 577 kJmol-¹

Physics - JEE mains PYQ

 Q. Position of an ant (S in metres) moving in Y-Z plane is given by S=2t²j+5k (where t is in second). The magnitude and direction of velocity of the ant at t = 1 s will be :                                                         (Jee mains- 2024) 1. 16 m/s in y-direction  2. 4 m/s in x- direction  3. 9 m/s in z- direction  4. 4 m/s in y-direction  Show Answer 4 m/s in y-direction. v=ds/dt=4t ĵ At t = 1 sec v = 4ĵ More Questions kinametics PYQ

Chemistry - metallurgy PYQ 2022

 Q. In metallurgy the term "gangue" is used for:                                                         ( JEE mains 2022 ) 1. Contamination of undesired earthy materials. 2. Contamination of metals, other than desired metal 3. Minerals which are naturally occuring in pure form 4.Magnetic impurities in an ore. Show Answer Ans:- [A] Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

Indefinite Integration: Complete Notes for JEE Mains & Advanced

Indefinite Integration – Complete Revision (JEE Mains & Advanced) Indefinite Integration is not about memorising random formulas — it is about identifying forms . JEE strictly rotates questions around a fixed set of standard integrals and methods . This note covers the entire official syllabus with zero gaps. 1. Definition \[ \int f(x)\,dx = F(x)+C \quad \text{where } \frac{dF}{dx}=f(x) \] 2. ALL Standard Integrals (Must Memorise) \(\int x^n dx = \frac{x^{n+1}}{n+1}+C,\; n\neq-1\) \(\int \frac{1}{x}dx = \ln|x|+C\) \(\int e^x dx = e^x+C\) \(\int a^x dx = \frac{a^x}{\ln a}+C\) \(\int \sin x dx = -\cos x + C\) \(\int \cos x dx = \sin x + C\) \(\int \sec^2 x dx = \tan x + C\) \(\int \csc^2 x dx = -\cot x + C\) \(\int \sec x\tan x dx = \sec x + C\) \(\int \csc x\cot x dx = -\csc x + C\) 3. SIX IMPORTANT FORMS (JEE CORE) Form 1: \(\int \frac{1}{x^2+a^2}dx\) \[ = \frac{1}{a}\tan^{-1}\frac{x}{a}+C \] Form 2: \(\int \frac{1}{\sqrt{a^2-x^2}}dx\) \[...

Physics - Radioactivity PYQ 2023

 Q. The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in 15 years is :                                                         ( JEE mains 2023) 1. 1/8 2. 1/4 3. 7/8 4. 3/4 Show Answer Ans. (3)  15 year = 3 half lives  Number of active nuclei = N/8  Number of decay = 7/8N

Physics - simple harmonic motion pyq 2023

 Q. In a linear simple harmonic motion (SHM) (A) Restoring force is directly proportional to the displacement.  (B) The acceleration and displacement are opposite in direction.  (C) The velocity is maximum at mean position. (D) The acceleration is minimum at extreme points.  Choose the correct answer from the options given below:                                                         (JEE mains 2023) 1. (A), (B) and (C) only   2. (C) and (D) only 3. (A), (B) and (D) only 4. (A), (C) and (D) only Show Answer Ans. (1)   F=-kx,          A true  a=-w²x.      B true  Velocity is maximum at mean position, C true  Acceleration is maximum at extreme point, D false

Physics - waves PYQ series 2023

 Q. The height of transmitting antenna is 180 m and the height of the receiving antenna is 245 m. The maximum distance between them for satisfactory communication in line of sight will be :                                                         ( JEE mains 2023) 1. 48 km 2. 56 km 3. 96 km 4. 104 km Ans. (4)   dmax = √(2Rh, +2Rh) = √2x64×105×180+2×64×105×245  = {(8× 6 × 10³) + (8 × 7 × 10³)} m  = (48 +56) km  = 104 km

Chemistry - jee mains PYQ 2023

   Q. The volume (in mL) of 0.1 M AgNO3 required for complete precipitation of chloride ions present in 20 mL of 0.01 M solution of [Cr(H2O)5Cl]Cl2 as silver chloride is                                                     (jee2023) Show Answer And: 4

Chemistry PYQ - Question no. 6

 Q. Which structure of protein remains intact after coagulation of egg white on boiling?                                                         (JEE mains 2024) 1. Primary 2. Tertiary 3. Secondary 4.Quaternary Show Answer (1)  Boiling an egg causes denaturation of its protein resulting in loss of its quaternary, tertiary and secondary structures. Loading…